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DUAL EXTREMUM PRINCIPLES FOR NON-NLGATIVE
UNSYMMETRIC OPERATORS

Ismacl Herrera* QS - Michael J. Sewell 13' 5>
National University of Mexico University of Reading

INTRODUCTION

Much progress has been made in recent years in the development of a theoretical framework
for the formulation of variational principles [Sewell, 1969; Noble and Sewell, 1972; Sewell, 197 3a,
b; Herrera, 1974; Herrera and Bielak, 1976; Sewell and Noble 1976]. A contribution due to Sewell
[1973, a] allows one to generate dual variational principles from a single functional and to unify the
theory. Herrera [1974], and Herrera and Bielak [1976], developed a formulation of variational prin-
ciples using functional-valued operators which simplifies the treatment of partial differential
equations because it is applicable in any linear space, not necessarily normed, or with an inner
product, or complete. The situation has been summarized by Herrera and Bielak [1976].

A sufficient condition for an operator equation to admit a variational formulation is that the
operator be potential, and this will be so if and only if its derivative is a symmetric bilinear func-
tional. Variational and extremum principles are interrelated because a necessary condition for the
existence of a stationary extremum is the vanishing of the variation. A sufficient condition for a
variational principle to be extremum is that the generating functional be either convex or concave.
In general, a functional is neither convex nor concave; however, if the linear space in which the
functional is defined can be decomposed into two subspaces, one in which the functional is convex
and another in which it is concave, the functional is saddle, so that Noble and Sewell's results
can be applied; then the variational principle becomes a pair of dual principles. Such a decompo-
sition can be expected to exist under very gencral conditions, at least locally, because this is the
case for surfaces in finite dimensional spaces.

For linear operators the theory becomes especially simple. A sufficient condition for a linear

equation to admit a variational formulation is that the operator be symmetric. If the operator is
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either positive or negative, then the associated functional is either convex or concave, and
consequently the variational principle is an extremum o'ne. In general a symmetric linear
operator is neither positive nor negative, but under very general conditions (e. g. when
spectral theorems are applicable), the linear space D in which the operator is defined can
be decomposed into two subspaces, one D+ in which the operator is non-negative and
another D_ in which it is non-positive; then the associated functional is saddle and the
variational principle generates dual extremum principles of Sewell's type. Accordingly, it
is possible to associate dual extremum principles to arbitrary equations formulated in terms
of linear symmetric operators.

The main advantages of using functional-valued operators are [Herrera and Bielak,
1976]:

i) Problems are formulated in the most general kind of linear spaces, which are not
necessarily normed, or with an inner product, or complete. Most work in this field has
been done in either inner product spaces [Noble and Sewell, 1972; Sewell, 1969, 1973a, b;
Sewell and Noble, 1976] or in Hilbert spaces {Arthurs, 1970; Robinson, 1971; Collins, 1976;
Brezis and Ekeland, 1976) and it is generally thought that this is desirable, if not essential,
for the results to hold. In many applications the introduction of the Hilbert space structure
leads to unwarranted complications. This is not required when functional-valued operators
are used.

1) The introduction of superfluous hypotheses in the development of a theory is always
inconvenient, because frequently they needlessly restrict its applicability.

1i1) The symmetry condition for the potentialness of an operator can be extended to
linear spaces for which no inner product or norm have to be defined [Herrera, 1974]. This fact
makes it possible to formulate a theory which is rigorous and at the same time not compli-
cated_.

iv) Error bounds for approximate solutions are among the most important results that
the theory yields. They depend, however, on simple properties which are independent of

any Hilbert space structure, and therefore can be obtained in the simple setting developed
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by .Herrera. General results for such bounds are given in Section 3 of this paper; they in-
duce a metric in the space. By using these bounds it is possible to define weak or gener-
alized solutions; however, these will not be discussed here. Certain error bounds for non-
linear problems have been described by Sewell and Noble [1976].

The application of the theory of functional-valued operators to partial differential
equations requires one to express them in terms of such operators. This is achieved by
repeated use of integration by parts formulae. Inthis respect, the main advantage over
standard formulations is derived from the fact that such manipulations can be carried out
more systematically; for example, the operators involved always possess an adjoint. A
discussion of the treatment of boundary conditions has already been given [Herrera, 1974;
Herrera and Bielak, 1976]; and in another way by Noble and Sewell [1972 et seq. ]

Due to its generality, the usefulness of the concept of saddle functional is great.

In applications the flexibility of this concept is enhanced by the fact that its definition
[Sewell 1969, §2 (vii)] depends essentially on the system of coordinates used. This is a
fundamental difference with respect to the same concept when applied to surfaces; the
saddle property of a surface is independent of the system of coordinates used.

In some applications it may be difficult to find a decomposition of the space with re-
spect to which the functional is saddle. For linear problems [Herrera, 1974], this amounts
to constructing a decomposition (D+, D ) of the space, such that the operator is non-
negative on D+ and non-positive on D_ . However, the restrictions imposed by these
conditions are not too severe, because such @ decomposition is not unique, and in this paper
a wide class of variational principles is given for which it is easily obtained.

For initial value problems only stationary and not extremum principles had been ob-
tained, until recently. However Herrera [1974] obtained dual extremum principles for in-
itial value problems that were later applied to a large class of problems by Herrera and
Bielak [1976]. Later Collins [1976] extended these results to a general kind of dissipative
system by considering simultaneously the adjoint equation. In France, extremum principles
for initial value problems corresponding to certain parabolic equations have just been
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obtained [Brezis and Ekeland, 1976]; they imposc more severe restrictions on the boundary
conditions than those mentioned above.

The procedure used by Collins for dissipative systems (essentially, the mirror method)
to generalize Herrera's principles offers interesting possibilities, because this approach

is not limited to dissipative systems. In this paper a general procedure for derfving dual

extremum principles by the mirror method is developed; it is applicable to any linear prob-
lem formulated in terms of a non-negative (or alternatively non-positive) functional -valued
operator. To illustrate the method, it is applied to the heat and the wave equations. To

1 our knowledge, these are the first extremum principles for the initial value problem associ-
ated with the wave equation,even though further work will be required to apply them. The
principles derived for the heat equation are different from those available up to now and
impose iess restrictive conditions on the test functions.

A brief description of the theory of functional-valued operators is given in Section 2
and saddle operators are introduced there. Variational and extremum principles for arbi-
trary saddle operators are given in Section 3 and in the next Sectio'n these results are used
n ‘ to develop a general theory of non-negative unsymmetric operators. Section 5 is devoted

to extending this theory to problems defined in affine subspaces. Some applications of the

theory to partial differential equations are given in Section 6. Only the heat and wave

|
E : equations are considered, but the application of the theory to other equations can be made

P in a similar manner.
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2. SADDLE OPERATORS

The notion of saddle functional [Sewell, 1969; Noble and Sewell, 1972] has been
used extensively in the formulation of dual extremum principles and Herrera [1974] has used
it to develop an approach adequate for the treatment of partial differential equations
[Herrera and Bielak, 1974, 1976]. In this section a version of this method which is suitable
for linear problems will be described.

Let D be any linear space, not necessarily metric, or normed, or with an inner pro-
duct, or complete. The value of any real linear functional f: D - Rl at an element ve D
' is a real number to be denoted by (f,v) . It is emphasized that this is not an inner
product, even though the same notation is often used for such [in particular by Noble and

Sewell, 1972]. The linear space of all such functionals will be denoted by D* 3

*
Consider a linear operator P;: D - D which is therefore a functiona!-valued linear

%
operator. Thus, for each ue D there is an element Pue D, and the value of this func-
tional at any ve D is (Pu,v) . Given any such operator, the adjoint operator

* *
P:D - D, defined by the condition that

*
(Pu,v) = (Pv,u) (2.1
is satisfied Yue D and Yve D, always exists. The operator P will be said to be sym-

%
metric, or self-adjoint, whenever P = P.

g Two subspaces D, C D and D2 C D are called a decomposition of D if D, and

1 1

“ Dz are linearly independent and D = Dl + D2 . In this case, given any ue D there is

a unique couple (ul, uz) belonging to Dl and D_ respectively, such that u = u1 + u2 3

2

the elements u, and u, are called projections of u on D

1 2 and D2 . Projections of

1

o
N

£ 3
linear functionals and functional-valued operators are defined similarly. Given fe D

- *
and P: D - D*, the projections fl € D,“r and ‘2 ¢ D are such that
(fl,u) = (f,u)) (fz,u) = (f,uz) (2. 2a)

* *
for every ue D, while the projections Pl’ D-D and Pz: D - D satisfy the condi-

tions

%




Pu = (Pu), Pyu = (Pu), (2. 2b)

From these definitions it follows that

f=1f +f, (2. 3a)

P=P+P,. (2. 3b)

*
Definition 2.1. Let EC D be a subspace of D. Then an operator P: D~ D is

said to be non-negative on E if

(Pu,u) >0 forevery ueE ; (2. 4) 1

and positive on E if the equality sign in (2.4) holds only when u=0. When E=D the

specification "on E" will be omitted.

If P is non-negative on E the non-negative square root of (Pu,u) will be de-

noted by "u“P whenever ue E. The set

Np= {ucE ||u||P= 0} (2.5)

may contain non-zero vectors. However, NP is always a linear subspace of EC D .

Lemma 2.2. Let P be non-negative on E. Then NP is a linear subspace of

ECP.
Proof. It is required to prove:

i) uaNP=>aueN Yae R

P)

i) uy,ve Np=:> u+ Ve NP'

Property 1) is obvious because

i { P(au), au) = az ( Pu,u)
Property 1{i) follows from
1 1
{ -Z—(P(u+v), u+v) +E(P(u-v), u-v) = (Puyu) + (Pv,v) (2. 6)
which can be obtained expanding the left-hand member of this equation. Recalling that
; each of the terms involved in this equation is non-negative, the property is clear.
o
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*
Definition 2. 3. Let P: D - D be non-negative on E. Then u,ve D are said to

be P-equivalent if and only if u-ve N In this case one writes:

P

us_v . (2.7)

In view of Lemma 2. 2, this is an equivalence relation.

Non-positive and negative operators are defined by reversing the sense of the in-
equality (2.4). For this kind of operator there are definitions and results corresponding to
those already given for non-negative and positive operators. It is worth noticing that the

s relation =~ _ becomes equality when P 1is either positive or negative on E .

P

%
Definition 2.4. Let D D2 be a decomposition of D and P: D=+ D be a self-

, befiattim 28 v

adjoint operator. Then, P is said to be saddle with respect to Dl’ D2 if P is non-

i negative on D

and non-positive on D2 . It is strictly saddle if P is positive on D

1 1

and negative on D2 .

It must be observed that in this definition the sub-spaces can not be interchanged.
However, this manner of introducing them simplifies many of the propositions to be pre-
sented. For saddle operators the bilinear functional (Pul, vl) - (Puz, vZ) is symmetric
and non-negative. The non-negative square root of ( Pul, ul) - (Puz,uz) will be de-
noted by ||u|| p when P is strictly saddle "u" p is po;itive and therefore l|u|| p is a

norm. In this case the bilinear functional ( Pul, vl) -« Pu,, "z) is an inner product.

sk
Definition 2. 5. Let P: D~ D be saddle with respect to the decompositio:n I?l s

D2 of D. Then, u,ve D are said to be P-equivalent if and only if flu-v "p = 0; in

this case one writes

us_v , (2.8)

.

i For saddle operators the set
Ny = {ue D|llull, = 0}

is a subspace of D . Thus relation (2. 8) is an equivalence relation.

The following lemma will be used in the construction of dual extremum principles.

«T e
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Lemma 2.6. Let P: D+ D be saddle with respect to the decomposition Dl’ DZ )
Define the subspaces of D
D_={ue DIPlu:O} (2. 9a)
D, = {ue D|P2u= 0} . (2. 9b)
Then the operator P is non-positive in Da and non-negative in Db . Even more, if
ue D
a
(Pu,u) = -Ilulli i (2.103)
If ue Db
2
(Pu,u) = flullg (2. 10b)
Proof. Assume u ¢ Da’ and let Y and uZ be its projections. Then
(Pu,ul) =0

and therefore
( PUZ) ul) ¥ ( Pu: ul> i ( P’Ul, ul> = "< Pul’ul>
Hence

(Pu,u) = (Pu,ul) + (Pul,uz) + (Puz,uz)

<m2’u2> '(Pul)ul> o '”u"PiO

The proof of the other part of the lemma is similar.
In some applications it is relevant to consider operators which are saddle on a sub-

*
space only. Let EC D be a subspace, and El’ EZ a decomposition of E; then P: D - D
is said to be saddle on E with respect to the decomposition El’ EZ, if P is non-negative

on El and non-positive on Ez “

Strictly saddle on E is defined correspondingly.
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3. VARIATIONAL AND EXTREMUM PRINCIPLES

In this section a linear space D will be considered whose elements will be repre -
sented by 0 . Following Herrera [1974], the concept of derivative of a functional will be

used in the sense of additive Gateaux variation.

Definition 3.1. Let X:AD - R1 be an arbitrary functional and Qe D . Then

~ * A
X'(u) ¢ D is said to be the derivative of X at u _ii

g

Iy X+ W, o = (X, V) (3.1)

A

for every veD
The partial derivatives can be defined in termms of the total derivative.

Definition 3.2. Let 13 D.. be a decomposition of D . Assume the derivative of

L
the functional X: D - Rl exists at Q¢ D . Then the partial derivatives X, I(G) e D and
A * A~ *
X,n(u) e D are defined as the projection of X'(u) e D, 1i.e. in terms of (2.2)
X, I(u) = {X'(u)}I and X, ) = {x-(u)}II : (3.2)

A A

AX
Associated with a linear functional-valued operator P: D - D and for a given

A X
?e D , consider the equation

Ba =% . (3. 3§

When P is self-adjoint it is possible to establish a variational principle. To this end,
define the functional X: D-r by
~ 1 AN A A A
X(u):E(Pu,u) S (3.4)
When X is given by (3.4), the derivative X‘(ﬁ) always exists and is

A

Xy =Pa -t . (3. 5)

In view of this equation, the following theorem is obvious.

>

A Ak A~
Theorem 3.3. Let P: DD be self-adjoint. Then Ue D satisfies (3. 3)if and

only if
X'(u) = 0 . (3. 6)
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However, this is not an extremum principle. When there {s available a dc. omposi-
tion 61’ ?)“ of IS such that ?’ {s saddle with respect to ﬁl* 6”, it is possible to
formulate variational principles that are dual and extremum. Following Noble and Sewell

[1972, 1976) one considers the equations obtained by setting the partial derivatives of X

with respect to ﬁl and 61[ equal to zero. Tor the linear equation (3. 3), this leads to

the system of equations
X, I(u) = PIU - fI =0 (3.7a)
A _ A A 1 ? i . :
Xl =Ppn -, =0 (3.7b)
These equations, which are obviously equivalent to (3. 3), can also be derived from the
latter equation by taking projections on 151 and ﬁII . i
A A A ¥ ~ ‘
Theorem 3.4. Let P: D+ D be saddle with respect to the decomposition 61, DII
of f) . Define the affine subspaces
A~ -~ A A
D" {ue D| u satisfies (3.7a)} (3. 8a)
A A A, A }
Dy = {ue D[ u satisfies (3.7b)} . (3. 8b)
Then:
1) Ve D satisfies (3. 3) if and only if U e ?73 n 3b
~ A~ ~ A
ii) For every ua € Da and ub € I)b ¥
sty - i al= 15 -8 0z so (3. 9)
D a b a B — i

{if) If the maximum of X on ?)a and the minimum on Bb coincide and are attained

at G“ and Ub respectively, then
ety <

Thises (3.10)

Uaz’l; b

iv) If a solution JeD of (3. 3) exists, then

Sy - xiaate Be Bl o 06, - 905
Z[X(ub)-X(ua)]z ub-U - ke u -Ullp =00 (3.11)

In this case the maximum of X on ’[\)a is attained at u, if and only {f uy U, and the

10«




minimum of X on f)b is attained at Gb if and only if sz'ﬁﬁ . In particular if f! and

Q are two _solutions of (3. 3), they are P -equivalent.

Proof. Property i) is obvious.

It is instructive to prove part iv) before part ii), because its proof is simpler. If

Ue D satisfies (3.3), and Gbe Bb’ then

y = -(PU,T)

[

2%(0) = CPU, U) - 2¢H

2X(u) = (Pub, ub) - 2¢ PU,ub) ;

Thus

-~ A A A A -~ A
Z[X(ub) - X(U)] = ¢ P(ub-U), Uy -U)
because P is symmetric. Now Gb =Ue ﬁb (where ﬁb is defined by an extension of
(2.9b)), in view of the fact that G as well as Gb satisfy (3. 7b); thus, application of

Lemma 2. 5 (equation 2. 10b) leads to

2
A E A E A . A X > 3 24
2[X(uy) - X(U)] ”ub U||p >0 (3.12a)
Similarly
A A ~ A 2
= = e A > -
2[x(0) - x@ )1 = Ila_ - Ullg >0 (3.12b)
Adding these inequalities yields (3.11).
To prove property ii), let ua € Da and ub € Db: then
A AN A A AA lf\ A AA A
ZX(ua)~ (Pua-Z,ua) = 2/ Pua- ,ua) - (Pua, ua)
gt N/ uaII> m(Pu, U = (P ) - (P uaI) “ELhUag?
= M0 My - 2By, v ) = -l - 2¢Puy ) - 2P, u ) (S o)

where use has been made of the norm given before Definition 2. 5, and of equations (3.7)

and (3. 8). Similarly

2
2x0) = lu Iy - 2¢ PO ) - 2( B (3.13b)

alr Ypr?

=]]l=




Relation (3. 9) is obtained by subtracting (3.13a) from (3.13b).

Property iii) is obviously implied by ii).

s L
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4. GENERAL THEORY OT NON-NLGATIVE UNSYMMETRIC OPERATORS

Let P: D - D* be a non-negative and not necessarily symmetric operator. Assume

*
f,ge D are given functionals, and consider the system of equations
Pu, = f (4. la)

Pu, =g (4lb)

where ul, uZ e D . This system of equations may be written in terms of a symmetric oper-

A A %X A
ator '15: D - D where D=D @D is the outer sum of D with itself, i.e. it is the space
whose elements 1 = (ul, uz)e D are ordered pairs of elements ul,u2 e D. To express
equations (4.1) in the form

AA

Pu=f (4.2)

A A o 3 A A Xk A A A
let . D-D and fe D be such that for every u,ve D

(P4, vy = (Puj,v,) + (P*uz,vl) (4. 3)
and
(£, = CHYY ¥ (V) (4. 4)

The operator ?’ is clearly self-adjoint because

AA

(Pu,v) = (Pul,v2)+ (Pvl,uz) . (4. 5)

Due to this fact it is possible to formulate variational principles for the system (4.1). The
procedure just described is a rigorous generalization of the mirror method [Morse and

Feshbach, 1953].

A

Theorem 4.1. Let X: D- Rl be given for every Q¢ Db

X() = X(u,u,) = (Puj,u,) - (fup) - (g0 - (4. 6)

Then eaquations (4. 1) are satisfied if and only if

X'() =0 . (4.7)

Proof. It follows from Theoren 3.3, because

X(G)=lz(l;x;,3) S (fuy . (4. 8)

-13-




A
The operator P does not have the property of being non-negative or non-positive
because

AN

(B, 0) = 2(Puj,u,) (4.9)

In general when a self-adjoint operator which is functional-valued and linear is given, it

is possible to find decompositions 6! and D, of the space, such that the operator is

11
saddle with respect to them [Herrera and Bielak, 1976]. Tinding such decompositions may
be difficult in some instances; however, for the operator f’ here considered this is achieved

easily.

Lemma 4.2. Let a,B,Y, 6 be real numbers such that a6-fy+0, af <0, and y6 >0 .

2 Define
61 = {aeD| au + pu, = 0) (4.10a)
‘ D, = {ue D | yu, + bu, = 0} (4.10b)
Then:
i) The subspaces f)l, Bn constitute a decomposition of 13 . The projections GI
. and GII of any Ge 6% V
u, = X(-ﬁyul - ﬁéuz, ayy; + aéuz) (4. 1lla)
U=\ . . .1lb
; uII (06u1+ ﬁéuz, ayy, ﬁyuz) (4.11b)
where
’ 1
“ A=z ——— .12
; a5-py e
ii) The operator P is saddle with respect to f)l, 611 . Even more, if P is positive
f; -4 then P is strictly saddle.
E i1i) Let
!- Y = -B/a>0, v, = Y/6 >0 (4.13a)
] ’
B & e L (i b S (4.13b)
D ostwa Dy T e
? 2?
1"y, 2y,

-14 -
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N

Then
a2 2 2
"“"1’5""1"“1"?”“2"“2"? : (4.14)
) ~ 4! A s
Thus, the relation u ’"ﬁ" holds, if and only if the relations ul -~ v1 and u, =pv,
are satisfied simultaneously.
iv) Each of the equations (3.7a) _z_a&i (3.7b) is equivalent to
P P* = af 15
aul-ﬁ uz—a-pq (4.15a)
*
yl’ul -6P u, = vf - 6g (4.15b)

respectively.

Fig.l Decomposition of D to make P a saddle operator.

Proof. The decomposition of D is shown schematically in Figure 1. The definitions

(4.10) of 13 and ﬁ imply that these two sets are subspaces of ﬁ . To prove that they

I II
constitute a decomposition of 13, it is only necessary to show that GI and GII as given
A A A ~ ~ ~
by (4. 11) have the following properties: a) 01 € DI and U € Dn;b) us= uI + uu; c) this

-15-
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is the only couple of elements of D that has properties a) and b) . The proof of a), b)
and c) is straightforward.

In view of (4.9) and (4.10a), for every 0 151 one has

-ap (B5,0) = o’ Puju) +B5(Puy,u,) 20

A

Similarly, for every 0 e DII

AA A 2 2
v6(85,8) = yP (P, - 85,00 <0

From this property ii) follows easily.
Property iii) is obtained by direct computations.
The definition of projections implies that equation (3.7a) is satisfied if and only if

-~

(Pa-f vy =0 (4.16)

for every Ve ISI . Using equations (4. 3), (4.4) and (4.10a), it is seen that (4.16) is

equivalent to

*
—a(Pul-f,vl) + B(P uz-g,vl) =0 (4.17)
for every v, € D . Hence (4.15a). The proof of (4.15b) is similar.

In view of this lemma, Theorem 3.4 can be applied to this case.

A

Theorem 4.3. Let X: D~ R be given by (4.6), «6-py+#0, ap <0 and y6>0.

Define the affine subspaces:

Ba ={ue D| 0 satisfies (4.15a)} (4.18a)
p. = {ie Bl U satisfies (4.15b)} . (4.18b)

b

Then:

1) 4= (ul, uz) ¢ D is a solution of cquations (4.1) if and only if 0 e zl;a n Eb

ii) For every U (ual’uaz) € Da and every u = (ubl’ ubz) € Db
~ ~ 2 2
% = . - >
Z[X(ub) X(ua)] ml"ual Ut "p + m2||uaZ U, "p > 0. (4.19)

fif) If the maximum of X on Ba and the minimum on sb coincide and are attained at

4 and u tivel
u_and u - respectively

=16 -

e s it




ual ] P ubl (4. 20a)

and simultaneously

u . (4. 20b)

a2 "p b2
iv) If a solution 0= (Ul,UZ) ¢eD of (4.1) exists, then

> . 2 2
2[X(@,) - X(@ )] =m {luy - v g+ lu, - vl

b -

2 2
+m, (Il , - u,lg + fhu, - uis ) (4.21)

~

A A A
for every ua € Da and uy e Db .
Proof. Using Lemma 4.2, the proof of this theorem is a straightforward application

of Theorem 3. 4.




5. EXTENSION TO PROBLEMS DEFINED IN AN AFFINE SUBSPACE

In many applications to partial differential equations, the operator involved may be
saddle or non-negative when attention is restricted to functions satisfying certain boundary
conditions. In such problems the admissible functions usually constitute an affine sub-
space and the theory would be unduly restricted if such cases were not included.

Aset £ C D is said to be an affine subspace if there is a subspace Ec D and an
element we D such that g = w+l . Clearly, f::é when w e ﬁ, so that a linear
subspace is always an affine subspace.

Given a functional X: D - Rl, for each U e & the variation of X at U is a linear
functional 8X(0) e ﬁ*, such that

(6X(0), V) = (X'(0), V) (5.1)

for every Ve £ . Whena decomposition ﬁl’ ﬁII of £ is available, at every Qe E the
partial variations 61X(G) € ﬁ* (i = I, II) are defined in a manner similar to partial deriva-
tives [Herrera and Bielak, 1974].

Variational principles which hold when the set of admissible functions is f) itself,
but which remain valid when the set of admissible functions is restricted to be an affine
subspace E (&= 13, are known in many instances. The validity of such a procedure fre-
quently depends on the following property of the affine subspace [Herrera and Bielak,

1976].

A A AKX A
Definition 5.1. Let P: D+ D and fe D be given. An affine subspace & =& +£

is said to be determinative for problem (4. 2) if it possesses the following property:

Whenever 1 e 8, the fact that

A

~ A A A
(’l\?u - f,v) =0 forevery ve E (5.2)

implies (4. 2).
Lemma 5.2. Let f’: D - ]3* be self-adjoint, X(G) be given by (3.4) and E,C b

be an affine subspace determinative for problem (3. 3). Then Qe E satisfies (3. 3) if and

only if

-18-




e

6X(0) = 0 . (5. 3)

If in addition £ £ s a decomposition of £, then (5.3) can be replaced by:

P I
5lx(ﬁ) =0 (5. 4a)
6"X(u) =0 .
Proof. Equation (5. 3) means
(BO-f9y=(x'(0),V) =0 (5. 5)

whenever Ge ﬁ By the definition of determinative affine subspace the first part of the
lemma follows. The other part is obvious.
The following result can now be easily derived from Theorem 3.4.

Theorem 5.3. Assume é =w+ L isan affine subspace, determinative for problem

A

A A ¥k
(3.3). Assume in addition that P; D = D is saddle on £ with respect to the decompo-

sition EI’ i The properties i) to iv) of Theorem 3.4 remain valid when the sets :'a

m’

and Bb (equations 3. 8) are replaced respectively by:

A

e, = {Ue &| 0 satisfies (5. 4a)} (5. 6a)

A

g, = {0e & 0 satisfies (5.4b)} . (5. 6b)

Proof. Under the assumptions of the theorem and writing Q=w+ \7, problem (3. 3)

is equivalent to

7

Pv (5.7)

A ~ a¥k ~ A A
where Ve £, while P: £~ £ and fe £* are the restrictions of P and f to £. The

theorem follows now by application of Theorem 3.4 to equation (5. 7), after observing that

~A AN

’E(Pv,v) SRR Sy = XB) e (B Wy -‘E<§&,€v). (5. 8)

That is, the functional X(G) differs from the functional associated with the problem (5. 7)
formulated on £ by a constant term only.

%
Theorem 5.4. Assume P: D - D {s non-negative on the subspace EC D . Let

"1 =w + E and ez W, ¢ E, with W W, ¢ D, be two affine subspaces of D such

-19-




i

b o 08

that they are determinative for problems (4.1a) and (4. 1b) respectively. Define the affine

subspace & C D by ¢ =, ®e, = AW+E, where w = w, Ow, = (W w,), and E<E OF .

2 2

Let
Ea = {G e el u satisfies (5.4a)) (5.9a)
€b = {iee| 0 satisfies (5.4b)) (5. 9b)

Then Theorem 4. 3 remains true if the sets ;;a and Bb are replaced by sets éa and Eb

respectively.

Proof. This follows from Theorem 5.3, observing that the affine subspace g isde-
terminative for problem 4.2, while f’ is saddle on E=E @®LC with respect to the decom -
position EI’ EII of E . Here

EI = {V= (vl,vz) e £ av, + pv, = 0} (5.10a)

and

En = {v=(vvy) e 1:|Wl +ov, = 0}. (5.10b)

=20 =
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6. APPLICATIONS

In the applications to be considered, G will bc; a region in n-dimensional cuclidean
space, with closure G and boundary S = Sl U SZ’ where Sl and Sz are disjoint. The
linear space D of functions will be assumed to be such that the differential operators and

integrals are well defined (possibly in a generalized sense). Such would be the case if |

the functions are CZ on G X[0, T]; this is however, unnecessarily restrictive.

A. The heat equation

*
For every u, ve D, the operator P: D= D will be defined by:

2
dv ,du 9" u du dv
<P“")‘f{f e T ) w o et
> I | S

1
au ov ou ov
+fs = dx )dt + | [Sxi a—x‘i]t=o dx . (6.1

2

Using integration by parts, a convenient expression for the adjoint operator is obtained:

2
av 3u o u du dv
<P“V>-f{f (Bt *oxox % - S Bt an 92

1

d
f o axdars f[ax ]tTd . (6. 2)
SZ

Therefore:

(oy = [ f EPax ek [ 8 22 o

sor 2%
laxl ox

2
, )poplax = lullg

Assume fG’ fSl and fSZ are continuous functions defined on G X[0, T}, 5 X{o, T]

= )
and SZ.X[O,T] respectively, and let fo be Cl on G . Define fe D, forevery ve D,

by:
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0 GGat Sl 9n S ot

T dv v v
vy = [ [ t, godx+ [ty podx+ [ £, oo dx)dt
s
1 2

of

0 OJdv
+f [:— ——1] dx . (6.4)
0 9 = ~
G x1 x1 t=0

Let gG, gSl’ gSZ and gT be another set of functions satisfying the same hypotheses and

*
define ge D Dby:

T
v ov ov
<a,v) = [ {f 955 dx- [ 955y - [ Ig 7 X
. 0o G S S
: 1 2
= ag
s T 9v |
| +f ox ax her 9 i |
G i i |
Application of the so-called "fundamental lemma of the calculus of variations” shows
that for functions u, e D, the equation
Pul = f (6 6)
B is equivalent to the system:
du Bzul =
—aT- ~ BXi 5 = fG on G XIO, T] (6 7a)
ou
*a—t— = sl on Sl X[O, T] (6. 7b)
aul
=% 1gs oW S, x[o, T) (6. 7¢c)
an
b 8ul 8f0 -
W=R—0nGat te0 . (6. 7d)

¢ D, the equation

{ Similarly, for functions u,

Pu,6 =g (6. 8)

is equivalent to the problem

-22-




£
i

8u2 82 u, i

T + aja—x—i— = O on G X[0, T) (6. 9a)
auZ
= =g o0 5, X[o, T] (6. 9b)
ou
-l gsz on SZ X[o, T] (6. 9¢)
ou 8g

2 T =

5"? = 8)(1 on Gat t=T. (6. 9d)

A more standard form of these problems for the heat equation is obtained by replacing

equations (6. 7d) and (6. 9d) by

u=f on Gat t=0 (6.10)

n

and

n

uz=gT on G at t=T (6.11)

respectively. When these equations hold, the corresponding problems will be called
{nitial and terminal value problems respectively. Observe that a solution of problem (6. 7)
or (6.9) may differ from those of the latter by at most a constant.

*
The space f) and the operator T’: IS - ﬁ is defined as in Section 4. The functional

X given by equation (4. 6) is:
2

T auz Bul 9 ul Bul
Xupu) =f {f 57 5 ~wox. @ "% o 398
0 G y R |
)
aul 8\12 ul aul 8u2

+ fSl“'aT - fg)5m - 9a1 A 1O ¢ fsz[(Tﬁ' cdo) o -

aul f Bul afo auz
- QP === dx Jdt + | {[( = -5=)5=—1] .
S2 at G axi axi axi =0

9
Bg,r ul

£ [E?; Tx:]tfr}dx : (6.12)

Thus:

-23-
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Theorem 6.1. The functions

¢ D are solutions of problems (6. 7) and (6.9)

upy,

if and only if
X (ul, uz) =0
There are several alternative ways of stating the dual extremum principles derived

from Theorem 4. 3. One that we have found convenient is the following:

Theorem 6.2. For every ve D, define:

. azv

1
u (0 = £(X) + 5 v 1) - vix, 0) + fo (W +af, - pa;)dt) (6.13a)

1
“az(é,t)= E(V -au, ) . (6.13b)

Let the set of functions A C D be such that v e A implies ual e D and in addition:

2 T T :
b) —
Sx_la?c— [ vix, tdt = v(T)+v(0)-zafo+zagT+f (Bag -af)dt;  xe¢ G (6.14a)
i o 0

L. AP S, X[0, T 6.14b
gt = *lg theg on 8 N6, T] Lsite s
L A n S, X[0, T) 6. l4c
B -~ gt Plg 00 B, A0E . (6. 14c)

Assume the functional Qa: A~ R1 is given by:

T du du of of
a la 2 1 la la 1 0 0
am=s{f J 5 dadees | b |92 3) 5w o 9!
i i i
t=T
1 ov v
-Ef{ffG s dx + [ fogodx + [ £, graxlat
Sl S2
of
0 ov
) f -ax— —a-x— d.).(. . (6.]5)

The definitions of u B C D and Qb: B - Rl, are obtained replacing a by

b1’ Ub2’

y and B by & in the above definitions.

Let ve A and we B. Write Ul for the functions associated with v by
— — — al’ a ==

equations (6.13) and for the functions assoicated with w by the modified ver-

Ub1? Vb2
sion of those equations. Then:

2t a




\’ v are solutions

i) ual = ubl and simultancously uaz = ubZ’ if and only if ua

respectively of the initial and terminal value problems for the heat equation.

i)

2 2
IS s - a0l 200 (6.16)

22y w) - 2, =mllu-u l5

where || ||i is given by (6. 3).

Assume the maximum of Qa and the minimum of Q.b coincide and are attained at v

and w respectively. Then

=u , and u,=u . (6.17)

Thus, they are solutions of the initial and terminal value problems for the heat equation.

If solutions U], U2 ¢ D of the initial and terminal value problems respectively ex-

ist, then

12

2
pt v, -uylig)

2[ (w) - 2, )] =m {llu, -0,
2 2
+m, {llu, - U, lI0+ ||ua2-U2||p}30. (6.18)

Proof. To apply Theorem 4. 3, observe that in view of equations (6.1), (6.2), (6.4)

and (6.5), equation (4.15a) is equivalent to:

aul auz Bzul 8° u, i
HagE e Voxx, B bx ox sty S Hag on B O] {5 138)
aul au2
a Ft—--# e = afSl + ﬁgSl on SIX[O, T] (6.19b)
aul du
agt Pon = afsz + pgSZ on SZX[O’ T] (6.19¢c)
Bul 8f0 o
st on G at t=0 (6.19d)
i i
du 9g -
. e ON G Bt t=T (6.19e)
ax, Ox,
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¢ D as given by (6.13)

Let v e A; then a straightforward computation shows that ual’ uaz

satisfy equations (6.19a-d). On the other hand, equation (6.19e) is also satisfied by

uaZ’ by virtue of (6.14a).

In a similar fashion, it is shown that given w ¢ B, ubl and ub2 satisfy equations
(4.15b). Assertion i) follows from Theorem 4.3 and the fact that the u functions satisfy
equations (6.10) and (6. 11).

When equation (4.15a) is satisfied the functional X, given by (4. 6), becomes

a 1
X(ul, u,) = y (Pu), ul) ) &7 au, + ﬁuz) 5 (6.203a)
Similarly, when equation (4.15b) is satisfied
b L
X(ul, u,) =% { Pul, ul) - (afs 6ul +yu2) : (6.20b)

In view of these facts and property i), Theorem 4. 3 yields the rest of the theorem.

Dual variational principles for diffusion equations were first obtained by Herrera
(1974, Herrera and Bielak 1976]. Later Collins [1976] extended Herrera's results to a more
general class of dissipative systems. Independently Brezis and Ekeland [1976] have ob-
tained such principles for a class of parabolic equations. For the heat equation, Theorem
6.2 represents a definite improvement over previous results because these require solving
Laplace's equation at every time t . Brezis and Ekeland's [1976] principles are in addition
restricted to the case where SZ is void and u vanishes identically on S .

Dual variational principles for the heat equation that have been derived in the past
[Herrera, 1974; Herrera and Bielak, 1976; Collins, 1976; Brezis and Ekeland, 1976] can also
be obtained using the general theory presented here. For this purpose, the operator
P: D —» D* may be defined by:

dx (6.21)

i 2
0 ) 2
( Pu, v) :f {f v(—a—% -.a_xz.’.é-‘)%-.)d5+fu5—:-d§-f vé—:d)i]dt+fvu
Loy S2
t=0

0 G Sl G

which is positive on the linear subspace of functions with vanishing normal derivatives on
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S2 . The extension of the theory to problems formulated in affine subspaces, developed in
Section 5, can then be applied to this operator to obtain those results. However, the de-

tails will not be carried out here.

B. The wave ecuation

*
For every u,v e D, the operator P: D - D will be defined by:

f 2
Bv 8 du 2 u du dv au ov
<P“"’>=f {f o2 0% 0x x + [ 5 gn 95+ [ g pp dx Jat
S | Sl 2
du av 9u dv
+ [ __ s ] (6 22)
at ot 9 =
G t oJt x‘ xi t=0

Integration by parts shows that
(p* { o a u ———82u dx + fu By 4 +f s dx }dt
o et B f f T Bx B, yax g ot =" ) B0 Bt

ou 9v av .
.“at Bt axi bx ey 8 - (5. 23)

The operator P is non-hegative because

3 2 1 8u2 du du 9u 2 du 9u
E? (Pu,u) = "U" =3 fG axl.a—x‘]t=0 + [(ﬁ.) +—3?;3_X—i =T }dx (6.24)

In addition to the functions f and g introduced in subsection A, let f and 9, be

——

— *
continuous functions defined on G . Define fe¢e D for every ve D by:

(£, v) -f {ffGatdx+f fsw dx+f fszatdx}dt«rf[ft a\: +

o 5y
= = .25
i Bx, %, Jiap 92 Jid bk

and ge D"r by
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T
av v v 9
(a,v) = -f {fG 9 Br 92* fslgs1 an 9 ¢ fszgsz gt 934 *fG[gt o

0

Then, applying the fundamental lemma of the calculus of variations, it is seen that the

equation

for u, ¢ D 1is equivalent to the problem:

1

2
9
piks
atz

Similarly, the equation

is equivalent to the problem:

azu
Btz

azul =
- S;(F;. = fG on G X[O,T]

i)ul
5Ty =f, on SlX[O,T]

Sl
3ul :
- fSZ on S2 X[o, T]
aul e
T =f on G and t =0
aul of =
—— =—on G and t=0
9x ox
i i
P* =
u2 =g
azuz =
- a—x—-g-x~ = gG on GXIO,T]
i
8u2
ot - (]Sl on Sl X[o, T)]
¢'3u2
o = 9gp OM SZ X[o, T}

-28-
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26)

27)

28a)
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30a)
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Buz

-T' = gt on G and t=T (6. 30d)
225 - EEI G and t=T 6. 30
ax‘ = ax‘ on an =T . (6. 30e)

As in the case of the heat equation, the initial and terminal value problems are defined re-
placing (6.28e) and (6.30e) by equations (6.10) and (6.11) respectively; the observation
made there about the relation between their solutions also applies here.

*
The space 13 and the operator ’l;; IS - 13 will now be defined as in Section 4. The

functional X given by equation (4.6) is

X(ul, uz)

azu 8’ u du

T du

2 1 1 1

=f{f[———(——--————a -f)+g.—=—)dx +
0 G ot atZ 8)(1 xi G G ot

9 9 9
u u, u

1 1
*fSII(T - dgisy T e I

8\.\l auz aul
o s -0 0t s
S2
a
ou uZ ¢'3ul 8fo Buz

1
+f[(——'-f)—a—~ +t— -5 ) 5 ) 9%
G ot t t axi Bx‘ Bxi t=0

f 8ul BgT aul
e, = +5=— 51 _ dx
G t ot ?3xi axi t=T

(6. 31)

Theorem 4.1 ylelds a variational principle for the problem of the wave equation considered

here.

Theorem 6. 3. The functions ul,u2 ¢ D are solutions of problems (6.27) and (6.29)

simultaneously if and only if X'(u) = X‘(ul, uZ) SN0

Assume a,p, y, & are real numbers satisfying the hypotheses of Lemma 4.2, and

A
define DI and 611 by (4.10). Let

e




Given any w

Lemma 6.4.

are such that

al's 6/A; p' = -p/A

Y' = -Y/8; 8 =a/a

e D, define

A=-ab-fy .
Wy = a'wl +p'w2
u2=ywl+6'wZ

wl = azul 4 puz

w, = Yy + buz

Let w,w,e D, andlet u,u, be given by (6. 33).

12 W=7

du

—— =f,u =f on G at t

1
ot t° b0

3
Y5

B ST %y

satisfy equation (4.15a) if and only if:

ENp

afG+{igGW

]
5t - it Bag ?

1
T T BgszJ

=30=

"

(6.

(6.

6.

(6.

(6.

(6.

Assume wl

(6.

32(!)

32b)

. 32c)

33a)

33b)

Then these equations define a one to one mapping of 6 into itself whose inverse is

34a)

34b)

and

35a)

(6. 35b)

(6. 36a)




o

and equations (4.15b) if and only if;

2 2
) )
b Y2

4 ]
2 8xl xi

= yf . + &6g
at G TG

aw2

= Y{Sl + ngl (6. 36b)

8wZ

n Yig, + 895, »

all on the corresponding domains.

Proof. By direct computation, using the definitions of P, fand g, it is seen that
the assertion is true for functions satisfying equations (6.28d,e) and (6. 30d, e) . The
lemma follows from the fact that this set of equations is satisfied whenever equations

(6. 35) hold.

Theorem 6.5. Let D~ R be defined for every w = (wl’wl) eD by

QW) = w), w,) = X(u;,u,) (6. 37) 4

A A ~ A
where ul,u2 ¢ D are given by (6. 33). Assume We e ‘wal’ waz) e D and W = (wbl’ wbz) e D

satisfy (6. 35). In addition, it will be assumed that Cva satisfies (6. 36a), while CVb

satisfies (6. 36b). Then:

1) ul and u. satisfy the initial and terminal value problems respectively, if and

2

only if w) and w, satisfy equations (6. 36).
it) 9(u_,-u ) d(u_,-u ) du_ ,-u )
A &g al” bl'2 al” bl al”"bl
2{Q(Wb) n a)} = f I at il ax ax ]t=T 4%
G i i
du_,-u ) 9(u__-u, ) 9(u__-u )
a2z b2’ 2 a2 b2 a2z b2
tm, fl e axi ox, )iodx 2 0. (6. 38)
1il) A
Q(wa) & Q(wb) (6. 39)
if and only if
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a

du du du ou

1 b al bl ~ =
ta ¥ tl' _E:Woncatt-T (6.40a)

and simultaneously

du du du du
a2 b2 a2 . .b2 = i
=~ TE ¢ e axi on G at t=0. (6.40b)
i

iv) If solutions UI’UZ ¢ D of the initial and terminal value problems respectively,

exist, then

—_—

,\ .. du_-U), 8(u -U) , d(u_-U) 3(u_-U)
Z{"(Wb""(‘”a””‘lf[‘ N NS e al” "1 al” "1

. m T ox
i i
% By a(“bl'ul’] P [‘a(“az'Uz)\zHa(“bz'Uz))z
ax ax t=T ~ 2 S at
i i G
- o i ] »
X B 5-Y) B U5 e, Ul Sl U-z)] o &
Bxi axi E?xi i)xl =0 =~
Proof. This theorem is a straightforward application of Theorem 4. 3
Many extremum principles can be derived as corollaries of Theorem 6.5. Inmany

applications interest is centered in the initial value problem. In this case one can profit

from the arbitrariness of g . We do not intend to be exhaustive in this respect. However,

the following theorem is given as an example.

Theorem 6.6. Define the functional w: D - R for every pe D, by

op 2, 8p 2 9p
n(p)_f[( 4 axp £ ]t de-z{f(f fG dx+f fSl — dx+f fsz 5e dx)dt
i

of
P 0 8p
"f[ft at ax ox, S b =08 ) (6.42)

Define D'r C D by the condition p e DTr if and only if
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, ?-m;o on G X[0,T] , (6.43a)
9p
3t =0 on S X0,T], (6. 43Db)
9p
3n =0 on 8, X[0,T] . (6.43c)

Assume a solution pM ¢ D of the initial value problem for the wave equation exists. Then:

i) For each pe D'r

w(p) > rr(pM) . (6. 44)

1i) In addition the equality sign holds at some pe D"r if and only if
} p ap

P M op Rt i
ot &Y= 5 (%1 ox, (x,T) = x) (x,T) . (6.45)

Proof. Choose the functions g so that the right hand members in (6. 36a) vanish,
while g, = 9p = 0. For functions we D satisfying equations (6. 35) and (6. 36a):
A a l
ﬂ(w)-(Pul,uz) '(g,ul>'(f,u2> '6( U) -b—(f,wl>

because in this case equation (4.153) is satisfied.

At the same time (6. 35b) implies

w, at t=T . (6.47)

u, = 1

1

R =

Using the initial conditions (6. 35a) gives

2]
A apZ 8p _op
mw"_fG“f"WEx_i*“ " ox, Bx, Jpop Jox

(6.48)

-

4 af

op 0 9p 9p
% _f;; t 3t 8__5—;]todx+f(ffc;atdx+f f31a dx+f fszatdx)dt}

Q

where ap stands for w Multiply by 2p/a and eliminate an. irrelevant constant to ob-

1
tain the functional =(p) given by (6. 42).
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